题目描述:
给定一个长度为 n
的整数数组 nums
。
假设 arrk
是数组 nums
顺时针旋转 k
个位置后的数组,我们定义 nums
的 旋转函数 F
为:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]
返回 F(0), F(1), ..., F(n-1)
中的最大值 。
生成的测试用例让答案符合 32 位 整数。
数据范围:
$1\le n \le 10^5$
题解:
1 2 3 4 5 6 7 8
| 输入: nums = [4,3,2,6] 输出: 26 解释: F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。
|
观察可以发现, $f(1)$ 是在 $f(0)$ 的基础之上与 $sum$ 有关的修改得到的。
$f(k) = f(k - 1) + sum - n\times nums[n - i]$ 。
直接迭代求解。
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| auto optimize_cpp_stdio = []() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.tie(nullptr); return 0; }(); class Solution { public: const static int maxn = 1e5 + 10; const static int maxm = 1e5 + 10; const int INF = 0x3f3f3f3f; int maxRotateFunction(vector<int> &nums) { int n = nums.size(); int sum = 0, cur = 0; for (int i = 0; i < n; ++i) { cur += i * nums[i]; sum += nums[i]; } int maxx = cur; for (int i = 1; i < n; ++i) { cur = cur - n * nums[n - i] + sum; maxx = max(maxx, cur); } return maxx; } };
|