1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
| Global optimal solution found. Objective value: 284230.0 Infeasibilities: 0.000000 Total solver iterations: 10 Elapsed runtime seconds: 0.07
Model Class: LP
Total variables: 24 Nonlinear variables: 0 Integer variables: 0
Total constraints: 11 Nonlinear constraints: 0
Total nonzeros: 72 Nonlinear nonzeros: 0
Variable Value Reduced Cost X( 1) 76.00000 0.000000 X( 2) 88.00000 0.000000 X( 3) 96.00000 0.000000 X( 4) 40.00000 0.000000 Y( 1) 42.00000 0.000000 Y( 2) 56.00000 0.000000 Y( 3) 44.00000 0.000000 Y( 4) 39.00000 0.000000 Y( 5) 60.00000 0.000000 Y( 6) 59.00000 0.000000 P( 1, 1) 500.0000 0.000000 P( 1, 2) 550.0000 0.000000 P( 1, 3) 630.0000 0.000000 P( 1, 4) 1000.000 0.000000 P( 1, 5) 800.0000 0.000000 P( 1, 6) 700.0000 0.000000 P( 2, 1) 800.0000 0.000000 P( 2, 2) 700.0000 0.000000 P( 2, 3) 600.0000 0.000000 P( 2, 4) 950.0000 0.000000 P( 2, 5) 900.0000 0.000000 P( 2, 6) 930.0000 0.000000 P( 3, 1) 1000.000 0.000000 P( 3, 2) 960.0000 0.000000 P( 3, 3) 840.0000 0.000000 P( 3, 4) 650.0000 0.000000 P( 3, 5) 600.0000 0.000000 P( 3, 6) 700.0000 0.000000 P( 4, 1) 1200.000 0.000000 P( 4, 2) 1040.000 0.000000 P( 4, 3) 980.0000 0.000000 P( 4, 4) 860.0000 0.000000 P( 4, 5) 880.0000 0.000000 P( 4, 6) 780.0000 0.000000 T( 1, 1) 0.000000 290.0000 T( 1, 2) 0.000000 200.0000 T( 1, 3) 6.000000 0.000000 T( 1, 4) 39.00000 0.000000 T( 1, 5) 31.00000 0.000000 T( 1, 6) 0.000000 130.0000 T( 2, 1) 0.000000 90.00000 T( 2, 2) 0.000000 150.0000 T( 2, 3) 0.000000 130.0000 T( 2, 4) 0.000000 150.0000 T( 2, 5) 29.00000 0.000000 T( 2, 6) 59.00000 0.000000 T( 3, 1) 2.000000 0.000000 T( 3, 2) 56.00000 0.000000 T( 3, 3) 38.00000 0.000000 T( 3, 4) 0.000000 560.0000 T( 3, 5) 0.000000 410.0000 T( 3, 6) 0.000000 340.0000 T( 4, 1) 40.00000 0.000000 T( 4, 2) 0.000000 120.0000 T( 4, 3) 0.000000 60.00000 T( 4, 4) 0.000000 550.0000 T( 4, 5) 0.000000 330.0000 T( 4, 6) 0.000000 460.0000
Row Slack or Surplus Dual Price 1 284230.0 1.000000 2 0.000000 630.0000 3 0.000000 730.0000 4 0.000000 840.0000 5 0.000000 1040.000 6 0.000000 160.0000 7 0.000000 120.0000 8 0.000000 0.000000 9 0.000000 370.0000 10 0.000000 170.0000 11 0.000000 200.0000
|